# examples/09-graph_communication.jl
using Test
using MPI
MPI.Init()
comm = MPI.COMM_WORLD
size = MPI.Comm_size(comm)
rank = MPI.Comm_rank(comm)
#
# Setup the following communication graph
#
# +-----+
# | |
# v v
# 0<-+ 3
# ^ | ^
# | | |
# v | v
# 1 +--2
# ^ |
# | |
# +-----+
#
#
if rank == 0
dest = Cint[1,3]
degree = Cint[length(dest)]
elseif rank == 1
dest = Cint[0]
degree = Cint[length(dest)]
elseif rank == 2
dest = Cint[3,0,1]
degree = Cint[length(dest)]
elseif rank == 3
dest = Cint[0,2,1]
degree = Cint[length(dest)]
end
source = Cint[rank]
graph_comm = MPI.Dist_graph_create(comm, source, degree, dest)
# Query number of ranks that point to this rank, and number of ranks this rank point to
indegree, outdegree, _ = MPI.Dist_graph_neighbors_count(graph_comm)
# Query which ranks that point to this rank, and which ranks this rank point to
inranks = Vector{Cint}(undef, indegree)
outranks = Vector{Cint}(undef, outdegree)
MPI.Dist_graph_neighbors!(graph_comm, inranks, outranks)
#
# Now send the rank across the edges.
#
# Version 1: use allgather primitive
#
send = Cint[rank]
recv = Vector{Cint}(undef, indegree)
MPI.Neighbor_allgather!(send, recv, graph_comm);
print("rank = $(rank): $(recv)\n")
#
# Version 2: use alltoall primitive
#
send = fill(Cint(rank), outdegree)
recv = Vector{Cint}(undef, indegree)
MPI.Neighbor_alltoall!(UBuffer(send,1), UBuffer(recv,1), graph_comm);
print("rank = $(rank): $(recv)\n")
#
# Now send the this rank "destination rank"+1 times across the edges.
# Rank i receives i+1 values from each adjacent process
#
send_count = outranks .+ Cint(1)
send = fill(Cint(rank), sum(send_count))
recv_count = fill(Cint(rank + 1), length(inranks))
recv = Vector{Cint}(undef, sum(recv_count))
MPI.Neighbor_alltoallv!(VBuffer(send,send_count), VBuffer(recv,recv_count), graph_comm);
print("rank = $(rank): $(recv)\n")
MPI.Finalize()
> mpiexecjl -n 4 julia examples/09-graph_communication.jl
rank = 1: Int32[2, 3, 0]
rank = 3: Int32[2, 0]
rank = 0: Int32[2, 3, 1]
rank = 2: Int32[3]
rank = 2: Int32[3]
rank = 0: Int32[2, 3, 1]
rank = 3: Int32[2, 0]
rank = 1: Int32[2, 3, 0]
rank = 0: Int32[2, 3, 1]
rank = 1: Int32[2, 2, 3, 3, 0, 0]
rank = 2: Int32[3, 3, 3]
rank = 3: Int32[2, 2, 2, 2, 0, 0, 0, 0]